العلامة		/ * En . * * * * * * * * * * * * * * * * * *
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول (13 نقطة)
0,5		التمرين الأول: (06 نقاط)
0,5	0,5	النشاط الإشعاعي التلقائي: هو تحول طبيعي تلقائي وعشوائي في الأنوية غير المستقرة لتعطي $-1-I$
		أنوية أكثر استقرار بإصدار جسيمات eta ، eta .
		2- أنماط التحولات الموضحة في المعادلة:
01	0,5	$\binom{4}{2}He$)، وهو عبارة عن أنوية الهيليوم (α)، وهو
	0,5	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$ ، وهو عبارة عن إلكترونات (β^-)
	0,25	$^{238}_{92}U \rightarrow ^{206}_{82}\mathrm{Pd} + x_2^4He + y_{-1}^0e$ (*) د الدینا : y و x من x و y من x من x حدید قیمتي کل من x من x الدینا
0,5	0,25	238 = 206 + 4x ، $92 = 82 + 2x - y$ حسب قانونا الإنحفاظ فإن
		y = 6 ، $x = 8$ ومنه
		$N = \frac{A}{\lambda} = \frac{t_{1/2}}{\ln 2}.A$ ومنه $A = \lambda.N$ العينة: لدينا $A = \lambda.N$
0,5	0,25	$4.47 \times 10^9 \times 365 \times 24 \times 3600$ 4.78×10^{22} represent to 3
	0,25	$N = \frac{4.47 \times 10^9 \times 365 \times 24 \times 3600}{\ln 2} \times 2.35 \times 10^5 = 4.78 \times 10^{22} noyeaux$ نجد
	0,25	$\frac{N}{N_A} = \frac{m}{M}$ نسبة اليورانيوم (238) في العينة الصخرية: لدينا كتلة اليورانيوم في العينة -5
1,25	0.75	$p = \frac{m}{m_0} \times 100 = \frac{18.9}{47000} \times 100 = 0.04\%$ ومنه $m = \frac{N.M}{N_A} = \frac{4.78 \times 10^{22} \times 238.05}{6.02 \times 10^{23}} = 18.9 \; g$
	0,25	$p{>}0.02$ نعم المنجم مازال قابل للاستغلال لأن $p>0.01\%$
	0,25	$E_{lib} = ig E_l(initial) - E_l(final)ig $ لطاقة المحررة من نواة اليورانيوم: لدينا -1
0,5		
	0,25	$E = 7.590 \times 235 - (8.290 \times 140 + 8.593 \times 94) = 184.7 Mev$ نجد:
	0,25	$E_T = P \times t \times 100/85$ الطاقة المستهلكة الكلية خلال شهر: لدينا (أ -2
	0,5	$E_T = 25.10^6.30.24.3600 \times 100 / 85 = 7.62 \times 10^{13} \ jouls = 4.76 \times 10^{26} Mev$ ومنه
		m : m حساب مقدار الكتلة
1,75	0,5	$N = \frac{4.76 \times 10^{26}}{184.7} = 2.57 \times 10^{24} noyeaux$ ومنه $N = \frac{E_T}{E_{lib}}$ عدد الأنوية المستهلكة خلال شهر $N = \frac{E_T}{E_{lib}}$
	0,5	$m = \frac{N.M}{N_A} = \frac{2.57 \times 10^{24} \times 235.04}{6.02.10^{23}} = 1003 \ g$ ومنه الكتلة المستهلكة

العلامة		/ 1 Ext 10 T + Nx +
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,25	$\stackrel{E}{\longrightarrow}$ $\stackrel{u_R}{\longrightarrow}$ (07 نقاط) التمرين الثاني: (07 نقاط)
01	0,25	\bigcap^+ ${i}$
	0,25	u_C
	0,25	└── ┤ ├ ←
	0,25	المعادلة التفاضلية للشحنة q :
0,75	0,25	$i=rac{dq}{dt}$ حيث $R.i+rac{1}{C}q=E$ ومنه $u_R+u_C=E$
	0,25	$\frac{dq}{dt} + \frac{1}{R.C}q - \frac{E}{R} = 0$ نجد
	0,25	بالمطابقة نجد خبارة b ، A نشتق الحل نجد خبارة $\frac{dq}{dt} = Abe^{-bt}$
0,75	0,25	$Abe^{-bt} + \frac{A}{R.C} - \frac{A}{R.C}e^{-bt} = \frac{E}{R}$
	0,25	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
0,25	0,25	$i\left(t ight)=rac{E}{R}e^{-rac{t}{R.C}}$ عبارة شدة التيار: لدينا $i=rac{dq}{dt}$ بالاشتقاق نجد -4
	0,25	$u_R=R.i=E$ ومنه $u_C=0$ عند اللحظة $t=0$ عند اللحظة أ $t=0$
01	0,25	$R = \frac{E}{i_0} = \frac{6}{4.8 \times 10^{-3}} = 1250 \ \Omega$ نجد
	0,25	ب) إثبات قيمة سعة المكثفة: من المماس عند $t=0$ نجد $ au=R.C$ من البيان
	0,25	$C = \frac{\tau}{R} = \frac{2.5 \times 10^{-3}}{1250} = 2\mu F$
	0,25	$u_C + L \frac{di}{dt} = 0$ ومنه $u_C + u_L = 0$ حيث ومنه التفاضلية: لدينا $u_C + u_L = 0$
	0,25	$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$ بالاشتقاق والتعويض نجد $i = \frac{dq}{dt} = C\frac{du_C}{dt}$
	0,25	ui Li.
	0,25	ب) المنحنى الموافق لحل المعادلة التفاضلية هو الشكل -4
03,25	0, 5	التعليل: المعادلة التفاضلية حلها جيبي والوشيعة مثالية (لا تحتوي مقاومة داخلية) حيث لا
	0.25	تستهلك الطاقة ومنه لا يحدث تخامد في الاهتزازات (ثبات في السعة) $T_0 = 2\pi\sqrt{L.C}$ جـابرة الوشيعة: تعطى عبارة الدور الذاتي بالعلاقة:
	0,25	2
	0,25	$L=rac{{T_0}^2}{{(2\pi)}^2 imes C}=0.1H$ ومن المنحنى البياني $T_0=2.8 imes 10^{-3}s$ بالمطابقة نجد

العلامة		(t.\$t.c.io.it) i debt coio							
مجموع	مجزأة			عناصر الإجابة (الموضوع الأول)					
	0,25	$E(C)=rac{1}{2}C.{u_{C}}^{2}$: د) حساب الطاقة المخزنة في المكثفة				د).			
	0,25				E(C) = 3,6	$\times 10^{-5}$ joules	t = 0s نجد		
	0,25						عند $t = \frac{T}{4}s$ نجد		
		11 (6V	الأعظامية (المكثفة من قدمته الا			4 التفسير: خلال ربع الد	(2)	
	0,5	۵۷) إلى	د عصیه		•		الصفر بسب انتقال	(~)	
							زء الثاني:(07 نقاط)	الجز	
						قاط)	ى		
0,25	0,25			تسريع التفاعل	، الكبريت هو	•	1- الفائدة من إضافة ف		
0,25	0,25				سترية	بة لـ(A): وظيفة أ	تحديد الوظيفة الكيميائب	-2	
0,25	0,25					ستر .	يسمى التفاعل إماهة أ	-3	
0,25	0,25		-4− تحديد الوظيفة الكيميائية لـ(C): وظيفة كحولية.						
							5- جدول التقدم:	•	
	0,75	المعادلة		$CH_3COOC_3H_7(I) + H_2O(I) = CH_3COOH(I) +$					
							₃ H ₇ OH(I)		-
0,75			التقدم	0.02		n (mol)	0	-	
		الابتدائية	0	0.02 0.02-x	0.02	0	0	-	
			الانتقالية	X	0.02-x	0.02-x 0.02-	Х	X	-
		النهائية	X_f	0.02 – x_f	X_f	X_f	X_f		
						يبي للمعايرة:	-1- رسم التجهيز التجر	-II	
							1: حامل		
	0,5		3		••	**	2: سحاحة مدرجة تح		
0,5					ڍ		3: بيشر يحتوي على		
		4				(4: مخلاط مغناطيسي		
0.5		2- معادلة تفاعل المعايرة:			-2				
0,5	0,5	(CH₃COC	$OH(l) + OH^{-}(d)$	q(q) = C	$^{\circ}H_{3}COO^{\circ}(aq)$	$+ H_2O(l)$		

العلامة		عناصر الإجابة (الموضوع الأول)				
مجموع	مجزأة					
0,5	0,25 0,25	$n_A=C_B.V_{BE}$ ومنه عند التعديل يتحقق $n_A=C_B.V_{BE}$ ومنه $n_A=0.08\ mol$				
0,75	0,5 0,25	$ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ لدينا $ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ لدينا $ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ بما ان مردود الإماهة $ ho = 40\%$ والمزيج الابتدائي متساوي المولات فإن الكحول ثانوي				
1,5	0,25 0,25 0,25 0,25 0,5	تركيب المزيج بالمول عند التوازن:				
0,5	0,25 0,25	$C \cdot A$ تسمية المركبين $C \cdot A$: المركب $A : $ إيثانوات $A : $ مثيل أيثيل المركب $C : $ المركب $C : $ أول				
0,5	0,25 0,25	III-1- تفسير ما يحدث: يتغير لون المزيج من الأحمر البنفسجي إلى عديم اللون بسبب انزياح تفاعل الإماهة من جديد نحو نقطة توازن جديدة يتشكل عندها كمية جديدة من الحمض تجعل الوسط حامضي فيكون عديم اللون بوجود كاشف الفينول فتالين.				
0,5	0,25 0,25	ـــ عنوقع زيادة في مردود التفاعل بسبب زيادة كمية الحمض والكحول ونقصان الأستر والماء. نستنتج أن إضافة قاعدة قوية إلى تفاعل الأماهة يؤدي إلى زيادة مردودها.				

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	الجزء الأول(13 نقطة) التمرين الأول: (06 نقاط) -1 أ- الظاهرة الكهربائية : شحن المكثفة
1,75	0,75	E DUR R DUR
	0,5	
	0,25	$rac{dU_C}{dt}+rac{1}{RC}U_C=rac{E}{RC}$:ج) المعادلة التفاضلية $u_c(t)=E(\ 1-e^{-(t/RC)}$ (ع $u_c(t)=E(\ 1-e^{-(t/RC)})$
	0,5	: تحققها شدة التيار $\frac{di(t)}{dt}+rac{R}{L}i(t)=rac{E}{L}$ ب- ايجاد عبارة كل من: A و A
1,5	0,25 0,25 0,25 0,25	$i(t) = Ae^{-\frac{R}{L}t} + B$ $\frac{di(t)}{dt} = -\frac{AR}{L}e^{-\frac{R}{L}t}$ $-\frac{AR}{L}e^{-\frac{R}{L}t} + \frac{R}{L}(Ae^{-\frac{R}{L}t} + B) = \frac{E}{L}$ $\frac{RB}{L} = \frac{E}{L} \Rightarrow B = \frac{E}{R}$ $i(0) = A + B = 0 \Rightarrow A = -\frac{E}{R}$

العلامة		/ +1 2 t1		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)		
		3- أ) ارفاق كل منحنى بالوضع المناسب للبادلة شدة التيار في الوشيعة تتزايد مع مرور الزمن بينما		
	0,5	في المكثفة تتناقص و بالتالي البيان (a) يوافق البادلة في الوضع (2) و البيان (b) يوافق البادلة في		
		$u_c(t)$ و هو $u_c(t)$ و		
		E,R,C,L ب $-$ قيم المقادير		
	0,25	من البيان $u_{cmax} = E = 6 \ V : (b)$ من البيان E		
	0,25	$R = \frac{E}{I_{max}}$ من البيان (a):		
2,75	0,25	$R = 500\Omega$		
	0,25	من البيان (b): $ au_b=10ms$		
	0,25	$C = \frac{\tau_b}{R}$		
	0,25	$C = 2 \times 10^{-5} F$		
	0,25	$\tau_a = 1ms$		
	0,25	$\tau_a = \frac{L}{R}$		
	0,25	R $L = 500mH = 0.5H$		
	0,25	التمرين الثاني: (07 نقاط)		
	0,25	$Mg = Mg^{2+} + 2e^{-}$ المعادلتين النصفيتين -1		
1	0,25			
	0,25	$Mg^{2+}\!/\!Mg)$, $(H_3O^+\!/\!H_2)$ -		
		$n_0(Mg)$ = (m/M) = $(2/24)$ = $8,33.10^{-2}mol$ -2		
		$n_0(H_3O^+) = (C_0.V) = (10^{-2}.50.10^{-3}) = 5.10^{-4} mol$ $ M_0(H_3O^+) = (10^{-2}.50.10^{-3}) = 5.10^{-4} mol$ $ M_0(H_3O^+) = M_0^{2+} + H_2$		
		Mg $+$ $2H_3O^+$ $=$ Mg^{2+} $+$ H_2 $+2H_2O$		
		كميات المادة (mol) التقدم الحالة		
	0,75	ا بوفرة 0 8,33. 10 ⁻² 5 10 ⁻⁴ 0 حالة ابتدائية		
		بوفرة x		
		بوفرة x_{max} x_{max} x_{max} x_{max} x_{max} x_{max} x_{max}		
		ب- نبين ان المغنيزيوم موجود بالزيادة نعين المتفاعل المحد		
	0,25	$8,33.10^{-2}-x_{max}=0$ $x_{max}=8,33.10^{-2}$ المحد المغنزيوم هو المتفاعل المحد		
	0,25	أو شوارد الهيدرونيوم هي المتفاعل المحد $x_{max} = 2.510^{-4} mol$ المحد وعليه المغنيزيوم موجود بالزيادة		
L	<u> </u>	ومله سوارد انهيدرونيوم منعاص محد وحميه المعتبريوم موجود بالريادة		

العلامة		/ at ± bt						
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)						
	0,75	$x(t)=(5.10^{-4})/2$ - $n(H_3O^+)/2$ من جدول التقدم $Mg^{2+}=(x(t)/V)$ $Mg^{2+}=(x(t)/V)$ $Mg^{2+}=0.5$ $Mg^{2+}=0.5$ $Mg^{2+}=0.5$ $Mg^{2+}=0.5$ $Mg^{2+}=0.5$						
5	1	Items Description Descr						
	0,5	$[Mg^{2+}]=f(t)$ $[H_3O^+]=g(t)$ رسم البيانين $[Mg^{2+}]=f(t)$ $[Mg^{2+}$						
	0,25	$v_{ u}(Mg^{2+})=(d[Mg^{2+}]/dt)=0,54.10^{-3}mol.l^{-1}.min^{-1}$ السرعة الحجمية لاختفاء H_3O^+ ومنه $[Mg^{2+}]=0,5\;(10^{-2}-[\;H_3O^+])$						
	0,25	$(d[Mg^{2+}]/dt)=d(0.5(10^{-2}-[H_3O^+])/dt)=-0.5d[H_3O^+]/dt)$						
	0,25	$v_{\nu}(H_3O^+)=2.v_{\nu}(Mg^{2+})=2.\ 0.54.10^{-3}=1.08.10^{-3}mol.l^{-1}.min^{-1}$						
	0,25	و $-$ التأكد من قيمة $v_{v}(H_{3}O^{+})$ برسم المماس للمنحنى $v_{v}(H_{3}O^{+})$ نجد $v_{v}(H_{3}O^{+})=-d[H_{3}O^{+}]/dt=1.08\ 10^{-3}\ mol.L^{-1}.min^{-1}$						

العلامة		/ +12ti - + ti) 1 htt 1+-
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)
	0,25	x_f تعريف زمن نصف التفاعل $x(t)$ قيمة التقدم $x(t)$ نصف قيمته النهائية x_f
1	0,25	$[H_3O^+](t_{1/2}) = \frac{0.0005 - \frac{2x_{max}}{2}}{V} = 5. 10^{-3} \text{ mol/L}$
	0,25	$[Mg^{2+}](t_{1/2}) = \frac{x_{max}}{2V} = 2.5 \ 10^{-3} \ mol/L$
	0,25	$t_{1/2} = 2V$ 2,3 10 $t_{1/2} = 4.4 min$ بیانیا نجد $t_{1/2} = 4.4 min$
		الجزء الثاني(07 نقطة)
		التمرين التجريبي: (07 نقاط)
	0,5	1 - أ - التمثيل (3) لأن موجهة نحو الأسفل .
	0,25	$\sum \overrightarrow{F}_{ext} = m \overrightarrow{a}_G$: بتُطبيق القانون الثاني لنيوتن في معلم غاليلي : (1)
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \qquad \Rightarrow \vec{P} + \vec{\pi} + \vec{f} = m\vec{a}$
		بالإسقاط على محور الحركة نجد:
	0,25	$P - \pi - f = ma \Rightarrow mg - \rho vg - f = m \frac{av}{dt}$
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g(1 - \frac{\rho V}{m})$
03	0,25	
	·	$\sum \vec{F}_{ext} = m\vec{a}_G \implies \vec{P} + \vec{f} = m\vec{a}$: (2)
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g$
	0,5	v=0 . $v=0$ عند $t=0$
	0,5	$a_0 = g(1 - \frac{\rho v}{m})$: (1) الحالة
		$a_0 = g$: (2) الحالة (2)
01	0,5	$a_0 = 8 m/s^2$ $t=0$ عند . 2
	0,5	. التمثيل (1) هو الموافق $a_0 < g \Leftarrow$
0,25	0,25	$V_L=6\ m/s$: من المنحنى -3
		$rac{dv}{dt} = 0$ يكون $v = v_L$: عندما - 4
01	0,5	$\Rightarrow g(1 - \frac{\rho V}{m}) = \frac{k}{m} v_L \Rightarrow v_{L=} \frac{mg}{k} \left(1 - \frac{\rho V}{m} \right)$
	0,25	$k=rac{mg}{V_L}\left(l-rac{ ho v}{m} ight)$ فيمة ثابت الإحتكاك k : فيمة
	0,25	$k = 3,48.10^{-3} \ kg/s$ تطبيق عددي: $k = 3,48.10^{-3} \ kg/s$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	tالحظة t المطبقة على الكرية في اللحظة t المطبقة على الكرية في اللحظة t المطبقة على الكرية في الكر
	0,25	F=ma : طریقة A
	0,25	$a=\Delta v/\Delta t$ من البيان $a=1.07 m/{ m s}^2$
1 75	- ,	$F = 2.8 \cdot 10^{-3} N$
1,/3	0,25	
	0,25	Arr $ Arr$
	0,25	بالاسقاط على OZ
	0,25	$F = p - f - \pi \rightarrow F = mg - kv - \rho_{air} \cdot Vg \rightarrow F = 2.8 \cdot 10^{-3} N$