العلامة		/ 1 m
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التّمرين الأول: (06 نقاط) 1.
	0,5	1.1. طبيعة الحركة: الحركة مستقيمة متسارعة (متغيرة) بانتظام.
1.5	$0,25\times2$	$a_G = rac{\Delta v}{\Delta t} = 0,05m\cdot s^{-2}$: تسارع الحركة
	$0,25\times2$	$d=rac{\left(B+b ight)}{2}h=87,5m$: المسافة المقطوعة $d=rac{\left(B+b ight)}{2}$
0.5	0,5	2. نص القانون الثاني لنيوتن: في مرجع غاليلي يكون المجموع الشعاعي للقوى الخارجية
	0,5	المطبقة على جملة يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتّها.
0.75	0,75	x' \overrightarrow{F} \overrightarrow{F} x \overrightarrow{F} x \overrightarrow{P} x
		4. 1.4. المعادلة التّفاضلية: الجملة: المحفظة.
	0,25	الجملة. المحفظة. المرجع: سطحى أرضى نعتبره غاليليا.
	0,25	$\sum \overrightarrow{F}_{ext} = m \cdot \overrightarrow{a}_{_G}$ تطبيق القانون الثاني لنيوتن:
	0,25	$\sum \vec{F}_{ext} = \vec{P} + \vec{R} + \vec{F} + \vec{f} = m \cdot \vec{a}_G$
1.75	0,25	$F \cdot \cos \alpha - f = m \cdot \frac{d^2 x}{dt^2}$ بالإسقاط على المحور $(\overrightarrow{x'x})$ وأخذ القيم الجبرية نجد:
	0,25	$\frac{d^2x}{dt^2} = \frac{F\cos\alpha - f}{m}$ ومنه:
		$: \overrightarrow{F}$. شدة القوة $: \overrightarrow{F}$
	0,25	$F \cdot \cos \alpha - f = m \cdot a \rightarrow F = \frac{ma + f}{\cos \alpha}$
	0,25	F = 20,3N

العلامة		/ * #\$**
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	عي حالة حركة مستقيمة منتظمة: \overline{F} في حالة حركة مستقيمة منتظمة: $a=0$
	0,25	$F\cos\alpha - f = 0 \rightarrow F = \frac{f}{\cos\alpha}$
	0,25	$F = 20 \mathrm{N}$
1.5	0,25	حساب أقل سرعة: $d = vt \rightarrow v = \frac{d}{t}$
	0,25	$t \le 50 s \to v \ge \frac{d}{50}$
	0,25	$v \ge \frac{87.5}{50} \rightarrow v \ge 1,75 m \cdot s^{-1}$
		التمرين الثاني:(07 نقاط)
	0,5	1. تعريف العائلة المشعة: هي مجموعة الأنوية المشعة الناتجة عن التّفككات المتتالية بدء
2.75		من النواة الأم المشعة الى غاية النواة البنت المستقرة.
	9×0,25	: $^{226}_{88}$ Ra نواة $^{226}_{88}$ Ra سلسلة التَّفككات لنواة $^{226}_{88}$ Ra سلسلة التَّفككات لنواة $^{226}_{88}$ Ra $\xrightarrow{\alpha} ^{222}_{86}$ Rn $\xrightarrow{\alpha} ^{218}_{84}$ Po $\xrightarrow{\alpha} ^{214}_{84}$ Pb $\xrightarrow{\beta^{-}} ^{214}_{83}$ Bi $\xrightarrow{\beta^{-}} ^{214}_{84}$ Po
	0,5	2. $^{214}_{84}\text{Po} ightarrow ^{210}_{82}\text{Pb} + ^{4}_{2}\text{He}$ يعادلة التّفكك الأول لنواة البولونيوم 214:
2	0,25	عن هذا التّقكك: eta^- 2.2. طبيعة النشاط الإشعاعي للنواة البنت الناتجة عن هذا التّقكك: eta^-
	0,25	النواة البنت المستقرة من العائلة المشعة للراديوم 226 هي $^{206}_{82}$ Pb
	$4 \times 0,25$	${}^{214}_{84}\text{Po} \xrightarrow{\alpha} {}^{210}_{82}\text{Pb} \xrightarrow{\beta^{-}} {}^{210}_{83}\text{Bi} \xrightarrow{\beta^{-}} {}^{210}_{84}\text{Po} \xrightarrow{\alpha} {}^{206}_{82}\text{Pb}$
	0,25	$N(t)\!=\!N_0\!\cdot\!e^{-\lambda t}$:قانون التّناقص الإشعاعي: $N(t)\!=\!N_0\cdot\!e^{-\lambda t}$
2.25		2.3. تعريف زمن نصف العمر: المدة الزمنية اللازمة لتقكك نصف عدد الأنوية الابتدائية.
	0,25	(المدة الزمنية اللازمة لتناقص النشاط الاشعاعي الى النصف)
		$N(t) = N_0 \cdot e^{-\lambda t}$ العلاقة: من
	0,25	$N\left(t_{\frac{1}{2}}\right) = N_0 \cdot e^{-\lambda t_{\frac{1}{2}}} = \frac{N_0}{2} \; ; \; -\lambda t_{\frac{1}{2}} = -\ln 2 \; ; \; t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$
	0,25	(12)
	0,25	

العلامة		/ 1 m Ext	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)	
	4×0,25	: عمر النيزك هوبا: من قانون النّناقص الإشعاعي نجد: $t = \frac{t_{1/2}}{\ln 2} \cdot ln \frac{N_0 \binom{60}{26} \text{Fe}}{N \binom{60}{26} \text{Fe}}$ $t = \frac{2,62 \times 10^6}{\ln 2} \cdot ln \frac{1}{0.9789} \approx 8 \times 10^4 ans$	
		التّمرين التّجريبي: (07 نقاط)	
		أ-دراسة المدة الزمنية اللازمة للتخلص من التّرسبات.	
	2×0,25	1. 1.1. التّفاعل بطيء (استغرق عدة دقائق)	
		2.1. جدول التقدم	
2.75	$3 \times 0,25$ $3 \times 0,25$ $0,25$ $2 \times 0,25$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.25	0,25	(323 $s \le t \le$ 337 s و تقبل القيمة $330s$ و يتوقف التّفاعل بعد مدة قدرها 330 s	
0.25	0,25	3. عند توقف انطلاق الفقاعات الغازية.	
1.25	0,25 2×0,25	.4 $v_{vol} = \frac{1}{V} \frac{dx}{dt} \colon \text{disolution}$ السرعة الحجمية للتفاعل $v_{vol} = \frac{1}{V} \frac{dx}{dt}$ المرعة الحجمية للتفاعل $v_{vol} = 0.15 \times 10^{-3} \ mol \cdot L^{-1} \cdot s^{-1}$ ، $v_0 \approx 3 \times 10^{-3} \ mol \times L^{-1} \cdot s^{-1}$	
	0,25 0,25	2.4. لدينا $v_1 < v_0$ إذن السرعة تتناقص بمرور الزمن. بمرور الزمن تتناقص عدد التّصادمات الفعالة. بمرور الزمن تتناقص عدد الأفراد المتفاعلة مما يؤدي إلى تناقص عدد التّصادمات الفعالة.	

العلامة		/ t=\$t1 t1\ 7 1 Nt1 -1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
0.5	0,5	5. مدة التّنظيف أقل (التّركيز عامل حركي).
0.5	0,5	ب -مراقبة جودة الحليب: ${\rm HA}(aq) + {\rm HO}^-({\rm aq}) = {\rm A}^-(aq) + {\rm H}_2{\rm O}(l)$. معادلة تفاعل المعايرة: 1
0.5	2×0,25	: c_a عبارة c_a عبارة $c_aV_a=c_bV_{bE}$ ، $c_aV_a=c_bV_{bE}$ من علاقة التّكافؤ: $c_a=\frac{c_bV_{bE}}{V_a}=\frac{5\times10^{-2}\times12.5}{25}=2.5\times10^{-2}mol\times L^{-1}$
1	4×0,25	$m=c_aVM=2,25$ ومنه الحليب صالح للاستهلاك? $m=c_aVM=2,25$ المن الحليب: $D=\frac{2,25}{0,1}=22,5^{\circ}$ ومنه الحليب غير صالح للاستهلاك لان $D>18^{\circ}$

العلامة		/ *1 ² *tl a *: *1\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التّمرين الأول: (06 نقاط)
	0,25	1. 1.1. الظاهرة الكهربائية: شحن مكثفة.
		2.1. المعادلة التّفاضلية التّي تحققها الشحنة:
		$u_{\scriptscriptstyle C}(t) + u_{\scriptscriptstyle R}(t) = E$: من قانون جمع التّوترات
	0,25	$rac{q(t)}{C}$ + $R_{_{1}}rac{dq(t)}{dt}$ = E : ومنه $rac{q(t)}{C}$ + $R_{_{1}}.i(t)$ = E :
	2×0,25	$A \frac{dq(t)}{dt} + q(t) = B$ و هي من الشكل: $R_1 C \frac{dq(t)}{dt} + q(t) = CE$
3	0.25	$B=CE$ و $B=CE$ حيث $A=R_1C$. المدلول الفيزيائي للثابتين A و B :
	0,25	$A = R_1 C = \tau$ ثابت الزمن : $A = R_1 C = \tau$
	0,23	الشحنة الأعظمية للمكثفة. $B=CE=Q_{max}$
		.4.1 قيمة كل من C و E :
	0,25	au=0,5s بیانیا: $ au=0,5$ بیانیا:
	$2\times0,25$	$C = \frac{\tau}{R_{_1}} = 5,0 \times 10^{-5} \mathrm{F} = 50 \mu\mathrm{F}$: ومنه
	0,25	$Q = 1.5 \times 4 \times 10^{-4} C = 6.0 \times 10^{-4} C$
	$2\times0,25$	$E = \frac{Q}{C} = \frac{6.0 \times 10^{-4}}{5.0 \times 10^{-5}} \Rightarrow E = 12V$
		E K
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3	0,25	R_2 Y
3		(L,r) R_2 Y R_2 المعادلة التّفاضلية لتطور شدة التّيار:
	0,25	$u_{_{b}}(t)+u_{_{R_{_{c}}}}(t)=E$
	0,23	
	0,25	$L\frac{di}{dt} + ri + R_2 i = E$
		$\frac{di(t)}{dt} + (\frac{r + R_2}{L})i(t) = \frac{E}{L}$

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		au عبارة كل من a و a
		$\dfrac{di(t)}{dt}=\dfrac{a}{\tau}.e^{\dfrac{-t}{\tau}}$ ومنه: $i(t)=a-ae^{\dfrac{-t}{\tau}}$
	0.05	cii t
	0,25	$a(\frac{1}{\tau} - \frac{R_2 + r}{L})e^{-\frac{t}{\tau}} + \frac{R_2 + r}{L}a = \frac{E}{L}$: اذن
	0,25	$ au=rac{L}{R_{_2}+r}$: و منه
	0,25	$a = \frac{E}{R_2 + r}$
	0,25	تحدید a و $ au$ بیانیا:
	0,25	$a = I_{\text{max}} = 200 \text{mA} = 0.2 \text{A}$ $\tau = 10 \text{ms}$
	3,28	t=10ms استنتاج قیمتی کل من L و r
		$I = \frac{E}{R_2 + r}$
	0,25	-
		$r = \frac{E}{I} - R_2$
	0,25	$r = 8\Omega$
	0,25	$L = \tau (R_2 + r)$
	0,25	L = 0.6 H
		التّمرين الثاني: (07 نقاط)
		1. شروط الاستقرار:
0.75	$3 \times 0,25$	 يدور في نفس جهة دوران الأرض
		 يدور في مستوى خط الاستواء
		T=24h دوره يساوي دور الأرض $T=24h$
	0.25	نمثيل القوة $\overline{F_{T/S}}$: تمثيل القوة عند القوة عند $\overline{F_{T/S}}$: تمثيل القوة عند
0.55	0,25	$F_{T/S}$
0.75		$F_{T/S}$ عبارة $F_{T/S}$
	0,5	$\overrightarrow{F_{T/S}} = -G\frac{M_T m}{r^2} \overrightarrow{u}$

العلامة		/ ****ti ~ * * *ti\ ** 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
1.5	$4 \times 0,25$ $2 \times 0,25$: عبارة شعاع التّسارع: $\Sigma \overrightarrow{F}_{ext} = m\overrightarrow{a} \rightarrow \overrightarrow{F}_{T/S} = m\overrightarrow{a}$ $-G\frac{M_T m}{r^2} \overrightarrow{u} = m\overrightarrow{a} \rightarrow \overrightarrow{a} = -G\frac{M_T}{r^2} \overrightarrow{u}$
	27.0,20	و \vec{a} موجه نحو مركو الأرض فالحركة دائرية منتظمة. $\ \vec{a}\ = c''$
0.5	2×0,25	ر تمثیل شعاعي السرعة والتّسارع: $F_{T/S}$ a a b a a b a a b a b a a b a a b a a b a
	3×0,25	$F_0 = mg_0 = G \frac{M_T m}{R_T^2} \rightarrow g_0 = G \frac{M_T}{R_T^2}$ $GM_T = g_0 R_T^2$
1.5		الاستنتاج:
	3×0,25	$a = \frac{v^2}{r} = G \frac{M_T}{r^2}$ $v^2 = G \frac{M_T}{r} = \frac{g_0 R_T^2}{r}$
	0,25	6. نص القانون الثالث لكبلر: مربع الدور يتناسب طردا مع مكعب البعد.
1	3×0,25	: التّأكد: $T = \frac{2\pi r}{v} \to T^2 = \frac{4\pi^2 r^2}{v^2} = \frac{4\pi^2 r^2}{\frac{g_0 R_T^2}{r}}$ $T^2 = \frac{4\pi^2 r^3}{g_0 R_T^2} \to \frac{T^2}{r^3} = \frac{4\pi^2}{g_0 R_T^2}$
1	2×0,25	r حساب قيمة r $r=\sqrt[3]{rac{T^2g_0R_T^2}{4\pi^2}}=42266km$
	2×0,25	4π الارتفاع: $h = r - R_{\scriptscriptstyle T} = 35886 km$

العلامة		/ */ ² ** - * */\ 7
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		التّمرين التّجريبي :(07 نقاط)
		1. البروتوكول التّجريبي اللازم لتحضير المحلول (S_0) :
		الاحتياطات الأمنية:
	0,25	- لبس القفازات، وضع النظارات ، (يكفي ذكر وسيلتين للاحتياط)
		الزجاجيات:
	0,25	- حوجلة عيارية 100mL، زجاج الساعة، قمع زجاجي.
		المواد والأدوات:
1.25	0,25	- بلورات حمض البنزويك، الماء المقطر، ميزان إلكتروني، ملعقة.
		خطوات العمل:
		بواسطة ميزان إلكتروني نقوم بوزن الكتلة m_0 من بلورات حمض البنزويك $-$
	0,5	- نضع الكتلة في حوجلة عيّارية سعتها 100mL تحتوي على كمية قليلة من الماء المقطر
		- نسد الحوجلة ثم نقوم برجّها من أجل الحصول على محلول متجانس
		- نكمل الحجم بالماء المقطر حتى خط العيار.
0.7	0,5	2. معادلة التّفاعل الحادث بين حمض البنزويك والماء:
0.5		$C_6H_5 - COOH(aq) + H_2O(l) = C_6H_5 - COO^{-}(aq) + H_3O^{+}(aq)$
	0,25	: $\mathrm{C_6H_5}$ - $\mathrm{COOH}(aq)/\mathrm{C_6H_5}$ - $\mathrm{COO^-}(aq)$ الثنائية pK_a خساب قيمة pK_a د. حساب قيمة
0.5	0,25	$pK_a = -LogK_a = -Log(6,31 \times 10^{-5})$, $pK_a = 4,2$
	0,25	: النوع الغالب للثنائية $(S_0)^-(aq)/C_6^-H_5$ - $(S_0)^-(aq)$ في المحلول $(S_0)^-(aq)$ هو
0.5	0,25	$pK_a > pH$ لَأَنٌ C_6H_5 - COOH(aq)
		.5
	0,25	1.5. المقصود من المعايرة: تحديد التركيز المولي المجهول لمحلول.
		2.5. المخطط التّجريبي للمعايرة:
4.25		pH .1 .1
		2. محلول حمض البنزويك
	$5 \times 0,25$	3. مخلاط مغناطیسی
		4. سحاحة مدرجة
		 محلول هيدروكسيد الصوديوم
		·

العلامة		/ *1 ⁸ *t
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		3.5. معادلة تفاعل المعايرة:
	0,5	$C_6H_5 - COOH(aq) + OH^-(aq) = C_6H_5 - COO^-(aq) + H_2O(l)$
		$:(S_0)$ التّركيز المولي للمحلول المحضر المحضر المحضر المحضر المحضر المولي المحلول المحضر المحضر المحضر
	0,25	$V_{_{BE}}=18mL$:من المنحنى البياني
		$c_{\scriptscriptstyle A} = \frac{c_{\scriptscriptstyle B} V_{\scriptscriptstyle BE}}{V_{\scriptscriptstyle \bullet}}$
	0,25	$c_{A} = \frac{10^{-2} \times 18 \times 10^{-3}}{10 \times 10^{-3}}$
	0,25	$c_{A} = 1.8 \times 10^{-2} mol \cdot L^{-1}$
		V_0 الذي حجمه M كتلة حمض البنزويك النقي الموجود في المحلول S_0 الذي حجمه S_0 :
	0,5	$m = c_{\scriptscriptstyle A} V_{\scriptscriptstyle 0} M$
	- , -	$m = 1,8 \times 10^{-2} \times 100 \times 10^{-3} \times 122$
	0,25	m = 219,6mg
		6.5. النسبة المئوية p لحمض البنزويك النقي الموجود في البلورات المذابة:
	0,5	$p = \frac{m}{m_0} \times 100$
	0,25	$p = \frac{219,6}{244} \times 100$
		p = 90%