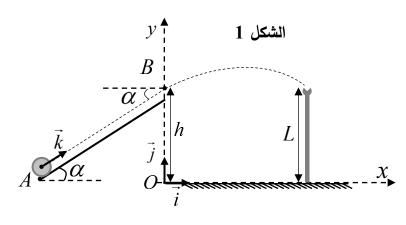
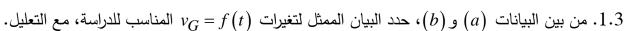
الجمهورية الجزائرية الديمقراطية الشعبية


وزارة التربية الوطنية

الشعبة: تقني رياضي - رياضيات

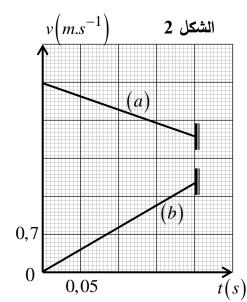
اختبار تجريبي 2 في العلوم الفيزيائية

المدة: 2 سا


التمرين الأول: (09 نقاط)

$\left(A,\vec{k}\, ight)$ الجزء الأول: دراسة حركة الكرية على المسار AB في المعلم

نقوم بإرسال كرية صغيرة (G) من البلاستيك نعتبرها نقطية كتاتها m الموضع الموضع v_A المحدد بالزاوية (α_0) بسرعة ابتدائية v_A لتصل إلى الموضع v_B بسرعة v_B بسرعة عن سطح حلبة اللعبة ب v_B (كل التأثيرات مع المهواء مهملة)


- (G) مثل القوى الخارجية المؤثرة على مركز عطالة الكرية (G).
- 2. بتطبیق القانون الثاني لنیوتن علی مرکز عطالة الکریة (G)، جد العبارة الزمنیة للسرعة $v_G(t)$ بدلالة کل من: $v_G(t)$ و $v_G(t)$
- 3. دراسة حركة الكرية (G) على المسار AB، مكنتنا من الحصول على البيان $v_G = f(t)$ الممثل لتغيرات سرعة الكرية $v_G = f(t)$ (الشكل.2)

- d ، v_B ، B الزمن المستغرق لوصول الكرية d الخرية t_B الزمن المستغرق لوصول الكرية .2.3
 - $lpha_0$ أحسب قيمة الزاوية $lpha_0$
 - الجزء الثاني: دراسة حركة الكرية في المعلم (O, \vec{i}, \vec{j}) .

تكتب عبارة شعاع الموضع لحركة مركز عطالة الكرية G في المعلم G بالعبارة التالية: $\overrightarrow{OG} = (v_B.\cos\alpha.t).\overrightarrow{i} + (-4.9.t^2 + v_B.\sin\alpha.t + 0.5).\overrightarrow{j}$

 (O,\vec{i},\vec{j}) . مثل القوى المطبقة على الكرية في المستوى .1

- y = F(x) استخرج معادلة مسار الحركة .2
- 3. نرید للکریة أن تسقط علی جهاز الاستقبال الذي یوجد علی مسافة $OS=x_S=0.5m$ یتحقق ذلك بالنسبة للزاویتین α_1 و α_2 ، جد قیمتی کل من α_1 و α_2 ، جد قیمتی کل من α_1 و α_2 ، خد قیمتی کل من α_2 ، خد قیمتی کل من α_3 و α_4 .

$$g = 9.8 \, m.s^{-2}$$
 ; $\pi^2 \approx 10$; $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$ يعطى:

التمرين الثاني: (11 نقاط)

في حياتنا اليومية دائما ما نستعمل مواد كيميائية في المطبخ ومأكولاتنا من بينها بيكربونات الصوديوم $NaHCO_3(s)$ وحمض الخل

يهدف هذا التمرين إلى التحقق من قيمة درجة الحموضة لخل تجاري، ثم المتابعة $CH_3COOH(aq)$ و $NaHCO_3(s)$.

التجربة الأولى:

نريد عن طريق المعايرة اللونية، التحقق من قيمة التركيز المولي لحمض الايثانويك في الخل مدون على بطاقة القارورة 8g الكتابة 8g والتي تعني أن كتلة g كتلة g من حمض الإيثانويك g الكتابة g والتي تعني أن كتلة g من حمض الإيثانويك g . $CH_3COOH(aq)$

نقوم بأخذ حجم V_0 من القارورة V_0 ونمدده V_0 مرة للحصول على محلول V_0 تركيزه المولي V_0 . نعاير المحلول المحلول V_0 بأخذ حجم $V_A=10$ ووضعه في بيشر، ملأنا سحاحة مدرجة بمحلول هيدروكسيد الصوديوم $V_A=10$ بأخذ حجم $V_A=10$ تركيزه المولي $V_A=10$ تركيزه المولي $V_A=10$ تركيزه المولي $V_A=10$ تركيزه المولي $V_A=10$

ننمذج التحول الكيميائي الحادث بمعادلة التفاعل التالية:

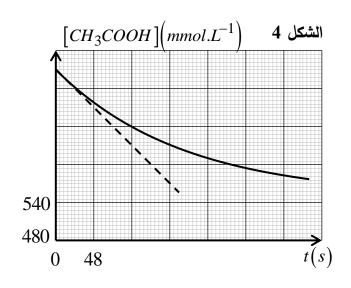
$$CH_3COOH(aq) + OH^-(aq) = CH_3COO^-(aq) + H_2O(l)$$

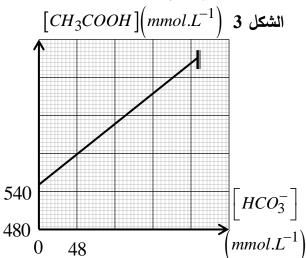
- 1. ضع رسم تخطيطي لعملية المعايرة، مع كتابة البيانات اللازمة.
- $.V_{B,E}$ = 19,8mل ون حجم المحلول الأساسي اللازم للتكافؤ هو .2
- (S_0) ، ثم استنتج التركيز المولى الأصلى للقارورة (S_1) ، ثم استنتج التركيز المولى الأصلى للقارورة (S_0)
 - 2.2. هل المعلومة المدونة على البطاقة صحيحة؟ علل.

 $M(CH_3COOH) = 60 g.mol^{-1}$ - الكتلة المولية: d = 1,05 الكتلة الخل: d = 1,05

التجربة الثانية:

 $\left(Na^{+}(aq) + HCO_{3}^{-}(aq)\right)$ من أجل دراسة التحول الكيميائي الحادث بين محلول هيدروجينوكربونات الصوديوم $CH_{3}COOH(aq)$.


 $.c_{1}^{'}$ نأخذ من المحلول (S_{0}) السابق حجما V_{0} ونمدده F مرة للحصول على محلول (S_{1}) تركيزه المولي $V_{1}=60$ السابق حجم $V_{1}=60$ من المحلول (S_{1}) لحمض الإيثانويك $V_{1}=60$ الصوديوم تركيزه المولي $V_{1}=60$ ثم قمنا بإضافة حجم $V_{2}=20$ من محلول هيدروجينوكربونات الصوديوم (C_{1}) ني التركيز المولي (C_{1}) التركيز المولي (C_{1})


و $\left[HCO_3^-\right] = f\left(\left[CH_3COOH\right]\right)$ الموضحة في الشكلين. 3 و 4 على التوالي.

ننمذج التحول الكيميائي الحاث بمعادلة التفاعل التالية:

$$CH_3COOH(aq) + HCO_3^-(aq) = CO_2(g) + CH_3COO^-(aq) + H_2O(l)$$

- 1. أنشئ جدول تقدم التفاعل.
- $\left[CH_{3}COOH\right]_{t}=rac{3c'_{1}-c_{2}}{4}+\left[HCO_{3}^{-}
 ight]_{t}$:مثبت أنه عند كل لحظة t ، يمكن كتابة العلاقة التالية: 2
 - 3. بالاعتماد على الشكل.3:
 - $.c_2$ و c_1' و التركيز المولى .1.3
 - x_{max} حدد قيمة التقدم الأعظمي .2.3
 - 4. 1.4. عرف السرعة الحجمية للتفاعل.
 - t=0 أحسب قيمتها عند اللحظة.
 - . عرف زمن التفاعل $t_{1/2}$ ، ثم حدد قيمته.

