MOUVEMENT DANS UN CHAMP DE PESENTEUR UNIFORME

Accélération	Accélération Vitesse		Accélération Vitesse	
$\vec{a} \begin{vmatrix} a_x \\ a_y \end{vmatrix}$	$ec{ ext{v}} egin{array}{c} ext{V}_{ ext{v}} \ ext{v}_{ ext{y}} \end{array}$	$\overrightarrow{OM} \mid_{y}^{x}$		
$\vec{a} = \frac{d\vec{v}}{dt}$	$\vec{v} = \frac{d\overrightarrow{OM}}{dt}$			
$a = \sqrt{a_x^2 + a_y^2}$	$v = \sqrt{v_x^2 + v_y^2}$			

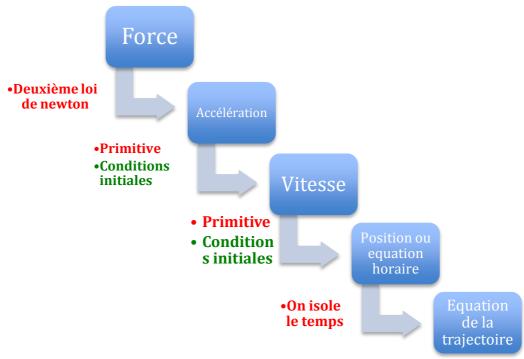
Système: corps étudié

Référentiel: référentiel d'étude des mouvements.

<u>Deuxième loi de newton</u>: $\Sigma \overrightarrow{F_{ext}} = m\vec{a}$

Chute libre: Soumis uniquement au poids.

Poids	$\vec{P} = m\vec{g}$	g : direction verticale sens du haut vers le bas
-------	----------------------	---



Feuille de route

Primitive (ou on intègre) en physique = avant \times t + constante

Attention : si t^2 apparait dans l'équation, mettre $\frac{1}{2}$

Les constantes trouvés dans les primitives = Conditions initiales

Exemple:

Système {projectile} Référentiel terrestre supposé galiléen

D'après la deuxième loi de newton :



$$\vec{a} \mid \begin{matrix} a_{x(t)} = 0 \\ a_{y(t)} = -g \end{matrix}$$

$$\vec{a} = \frac{d\vec{v}}{dt}$$

On intègre le système d'équation précédent :

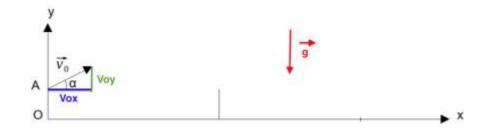
$$\vec{\mathbf{v}}_{(t)} \begin{vmatrix} \mathbf{v}_{\mathbf{x}(t)} = \mathbf{C}_1 \\ \mathbf{v}_{\mathbf{v}(t)} = -\mathbf{g}\mathbf{t} + \mathbf{C}_2 \end{vmatrix}$$

Pour trouver les constantes, on utilise les conditions initiales \vec{v}_0 :

Sur le sujet :

$$cos\alpha = \frac{\text{Adjacent}}{\text{Hypothènuse}} = \frac{v_{ox}}{v_0} \\
sin \alpha = \frac{\text{Opposé}}{\text{Hypothènuse}} = \frac{v_{oy}}{v_0}$$

$$\vec{v}_0 \begin{vmatrix} v_{ox} = v_0 \cos \alpha \\ v_{0y} = v_0 \sin \alpha \\ d'ou \end{vmatrix}$$



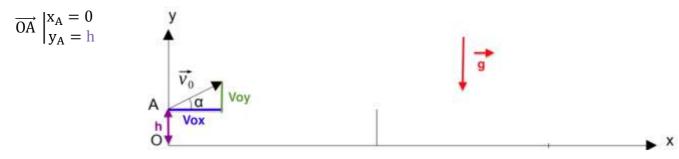
$$\vec{v}_{(t)} \begin{vmatrix} v_{x(t)} = v_0 \cos \alpha \\ v_{y(t)} = -gt + v_0 \sin \alpha \end{vmatrix}$$

$$\vec{v} = \frac{d\vec{OG}}{dt}$$

On intègre le système d'équation précédent :

$$\overrightarrow{OG} \begin{vmatrix} x(t) = v_0 \cos(\alpha) \times t + C_3 \\ y(t) = -\frac{1}{2}gt^2 + v_0 \sin(\alpha) \times t + C_4 \end{vmatrix}$$

Pour trouver les constantes, on utilise les conditions initiales \overrightarrow{OA}



ďou

$$\overrightarrow{OG} \begin{vmatrix} x(t) = v_0 \cos(\alpha) \times t \\ y(t) = -\frac{1}{2}gt^2 + v_0 \sin(\alpha) \times t + h \end{vmatrix}$$

Pour trouver l'équation de la trajectoire, on remplace le temps :

$$x = v_0 \cos(\alpha) \times t$$

$$v_0 \cos(\alpha) \times t = x$$

$$t = \frac{x}{v_0 \cos(\alpha)}$$

$$\begin{split} y(t) &= -\frac{1}{2}gt^2 + v_0\sin(\alpha) \times t + h \\ y(x) &= -\frac{1}{2}g\left(\frac{x}{v_0\cos(\alpha)}\right)^2 + v_0\sin(\alpha) \times \frac{x}{v_0\cos(\alpha)} + h \end{split}$$

$$y(x) = -\frac{1}{2}g\frac{x^2}{v_0^2 \cos^2(\alpha)} + \tan(\alpha) \times x + h$$

Aspect énergétique

Energie cinétique	Energie potentielle de pesanteur	Energie mécanique
$E_c = \frac{1}{2} \text{m.} v^2$	Epp=mgz	$E_M=E_C+E_p$

Théorème de l'énergie mécanique :

$$\Delta E_{m} = E_{m} (B) - E_{m} (A) = \Sigma W_{AB} (\vec{F}_{non conservatives})$$

l'énergie mécanique se conserve lorsque le système n'est soumis qu'à des forces conservatives comme le poids P ou la force électrique Fe.

Théorème de l'énergie cinétique :

$$\Delta E_{C} = E_{C \text{ finale}} - E_{C \text{ initiale}} = \Sigma W_{AB}(\vec{F})$$

Rappel: le travail d'une force

$$W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F.AB.cos(\alpha)$$

MOUVEMENT DANS UN CHAMP ELECTRIQUE UNIFORME

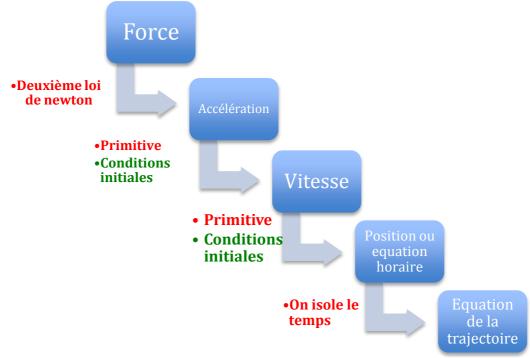
Accélération	Vitesse	Position ou équation horaire
$\vec{a} \begin{vmatrix} a_x \\ a_y \end{vmatrix}$	$ec{ ext{v}} egin{array}{c} ext{V}_{ ext{v}} \ ext{V}_{ ext{y}} \end{array}$	$\overrightarrow{OM} \mid_{y}^{x}$
$\vec{a} = \frac{d\vec{v}}{dt}$	$\vec{v} = \frac{d\overrightarrow{OM}}{dt}$	
$a = \sqrt{a_x^2 + a_y^2}$	$v = \sqrt{v_x^2 + v_y^2}$	

Système: corps étudié

Référentiel: référentiel d'étude des mouvements.

<u>Deuxième loi de newton</u>: $\Sigma \overrightarrow{F_{ext}} = m\vec{a}$

Force électrostatique	$\vec{\mathrm{F}}=\mathrm{q}\vec{\mathrm{E}}$	E direction perpendiculaire aux plaques sens du plus vers le moins.	q la charge du système e la charge élémentaire > q<0 F sens opposé à E > q>0 F même sens que E
--------------------------	---	---	---



Feuille de route

Primitive (ou on intègre) en physique = avant \times t + constante

Attention : si t^2 apparait dans l'équation, mettre $\frac{1}{2}$

Les constantes trouvés dans les primitives = Conditions initiales

Aspect énergétique

Energie cinétique	Energie potentielle électrostatique	Energie mécanique
$E_c = \frac{1}{2} \text{m. } v^2$	Epe=qV	$E_{M}=E_{C}+E_{p}$

Théorème de l'énergie mécanique :

$$\Delta E_{m} = E_{m} (B) - E_{m} (A) = \Sigma W_{AB} (\vec{F}_{non conservatives})$$

l'énergie mécanique se conserve lorsque le système n'est soumis qu'à des forces conservatives comme le poids P ou la force électrique Fe.

Théorème de l'énergie cinétique :

$$\Delta E_{C} = E_{C \text{ finale}} - E_{C \text{ initiale}} = \Sigma W_{AB}(\vec{F})$$

Rappel: le travail d'une force

$$W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F.AB.cos(\alpha)$$

Exemple: Pour trouver la vitesse d'un proton à la sortie S d'un condensateur en utilisant le Théorème de l'énergie cinétique

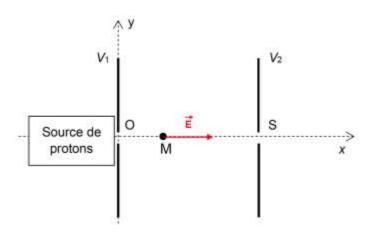
Système: proton

Référentiel: terrestre supposé galiléen

Théorème de l'énergie cinétique : La variation d'énergie cinétique entre deux points 0 et S est égale a la somme des travaux des forces:

$$\begin{split} & \Delta E_{C} = \Sigma W_{OS}(\vec{F}) \\ & E_{C \text{ finale}} - E_{C \text{ initiale}} = W_{OS}(\vec{F}) \\ & E_{C}(S) - E_{C}(O) = \vec{F}. \overrightarrow{OS} \\ & E_{C}(S) - E_{C}(O) = e \times \vec{E}. \overrightarrow{OS} \\ & E_{C}(S) - E_{C}(O) = e \times E \times OS \times \cos{(\alpha)} \\ & E_{C}(S) - E_{C}(O) = e \times E \times d \times 1 \\ & E_{C}(S) - E_{C}(O) = e \times \frac{U}{d} \times d \\ & E_{C}(S) - E_{C}(O) = e \times U \\ & \frac{1}{2} \times m_{p} \times v_{S}^{2} - \frac{1}{2} \times m_{p} \times v_{O}^{2} = e \times U \\ & 1 \end{split}$$

$$\begin{split} &\frac{1}{2}\times m_p\times v_S^2 - \frac{1}{2}\times m_p\times v_O^2 = e\times U\\ &\frac{1}{2}\times m_p\times v_S^2 - 0 = e\times U\\ &v_S^2 = \frac{2\times e\times U}{m_p}\\ &v_S = \sqrt{\frac{2\times e\times U}{m_p}} \end{split}$$



Satellites, Lois de Kepler

Lois de Kepler			
1 ^{ere} loi :	2 ^{eme} loi :	3 ^{eme} loi :	
Loi des orbites	Loi des aires	Loi des périodes	
Le centre de chaque planète décrit une trajectoire elliptique dont le soleil S est l'un des foyers.	Le segment soleil planète balaie des aires égales au cours de durées égales.	$\frac{T^2}{a^3} = constante$ Avec • T la période • a la moitié du grand axe Pour un mouvement circulaire: $\frac{T^2}{R^3} = constante$	
Périnélie Planéte	Δt S		

Mouvements circulaires

Base de Frenet:

- ightharpoonup Un vecteur tangent à la trajectoire généralement noté \vec{T}
- \triangleright Un vecteur normal à la trajectoire, généralement noté \vec{N}
- Vecteur accélération pour un mouvement circulaire :

$$\vec{a} = \frac{\vec{v}^2}{r} \vec{N} + \frac{dv}{dt} \vec{T}$$

Force gravitationnelle

La force exercé par un corps A sur un corps B est donnée par la relation vectoriel : $\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}} = -G \ . \frac{m_A \times m_B}{AB^2} \overrightarrow{u_{AB}}$

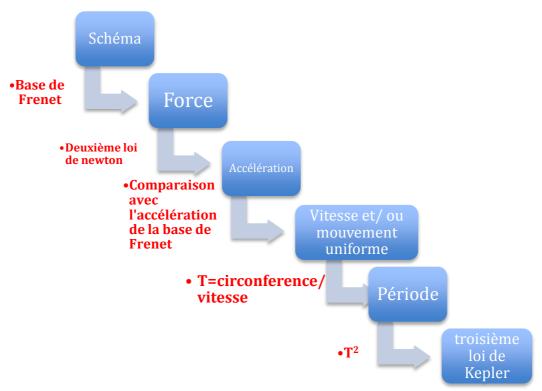
$$\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}} = -G \cdot \frac{m_A \times m_B}{AB^2} \overrightarrow{u_{AB}}$$

Mouvement circulaire, le vecteur accélération est de la forme: $\vec{a} = \frac{v^2}{r} \vec{N} + \frac{dv}{dt} \vec{T}$

La période de révolution : $T = \frac{\text{circonference}}{\text{vitesse}}$

Les satellites géostationnaires sont fixes par rapport à la terre :

- Ils évoluent dans un plan contenant l'équateur.
- Ils tournent dans le même sens que la terre
- Leur période de révolution est exactement égale à la période de rotation de la Terre



Feuille de route

Exemple:

Système: Planète

Référentiel: Héliocentrique supposé galiléen

Or, pour un mouvement circulaire, dans la base de Frenet, le vecteur accélération est de la forme:

$$\vec{a} = \frac{v^2}{R} \vec{N} + \frac{dv}{dt} \vec{T}$$

L'accélération étant unique, par identification :

 $\Rightarrow \frac{dv}{dt} = 0$ donc la vitesse est constante : le mouvement du satellite est uniforme.

$$ightharpoonup \frac{v^2}{R} = G \times \frac{M_s}{R^2}$$

donc

$$v^{2} = G \times \frac{M_{s}}{R}$$
$$v = \sqrt{G \cdot \frac{M_{s}}{R}}$$

La période de révolution est :

La période de révo
$$T = \frac{\text{circonference}}{\text{vitesse}}$$

$$T = \frac{2\pi R}{\sqrt{G \cdot \frac{M_s}{R}}}$$

$$T = 2\pi R \sqrt{\frac{R}{G \times M_s}}$$

$$T^2 = 4\pi^2 R^2 \frac{R}{G \times M_S}$$

$$T^2 = 4\pi^2 \frac{R^3}{G \times M_S}$$

$$\frac{T^2}{R^3} = \frac{4\pi^2}{G \times M_S}$$

On retrouve donc la troisième loi de Kepler :

$$\frac{T^2}{R^3}$$
 = constante

INTENSITE SONORE

Un son a une fréquence comprise entre 20Hz et 20 kHz Un infrason a une fréquence inférieure à 20Hz Un ultrason a une fréquence supérieure à 20 kHz

seuil d'audition

seuil de gêne

seuil de danger

seuil de douleur

			1
		I : intensité sonore	Décibels
		(W⋅m ⁻²)	I 0 respiration
	$I = \frac{P}{I}$	P: puissance	20 craquement de feuilles
	$I = \frac{1}{S}$	transportée par l'onde	tic tac d'une horloge
		sonore (W)	40 réfrigérateur
		S : surface de	chart
Intensité		réception (m²)	50 d'oiseau
sonore		L décibel acoustique	60 vagues
		(dB)	70 imprimante
	ī	➤ I en W.m ⁻²	Durée max de tolérance 80 intérieur métro/RER
	$I = I_0 \times 10^{\frac{L}{10}}$	I ₀ l'intensité sonore	8h
	0 -	correspondant au	2h 70
		seuil d'audibilité :	15min 100 1mite mp3
		$I_0=10^{-12} \text{ W.m}^{-2}$	40s Concert rock
		L décibel acoustique	20s tronçonneuse
		(dB)	2s avion au
Niveau	(1)	➤ I en W.m ⁻²	deconage
d'intensité	$L = 10 \log \left(\frac{1}{L}\right)$	I ₀ l'intensité sonore	coup de fusil
sonore L	\I ₀ /	correspondant au	
		seuil d'audibilité :	•
		$I_0=10^{-12} \text{ W.m}^{-2}$	

La mesure du niveau sonore s'effectue avec un sonomètre.

<u>Attention</u>: Lorsque plusieurs instruments jouent ensemble, les **intensités sonores** s'additionnent mais les niveaux d'intensité sonores ne s'additionnement pas.

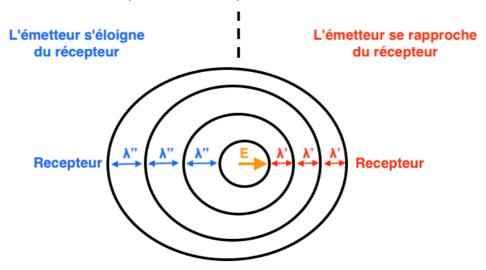
Atténuation:

- Géométrique : dû à la distance entre l'émetteur et le récepteur
- Par absorption : une partie de l'énergie du son est absorbée par un obstacle

Atténuation : A=Lincident -Ltransmit

EFFET DOPPLER

Une onde émise avec une fréquence f_e est perçue avec une fréquence f_r différente de f_E lorsque l'émetteur et le récepteur sont en déplacement relatif.



Lorsqu'ils se rapprochent la fréquence perçue augmente et lorsqu'ils s'éloignent la fréquence perçue diminue.

L'effet doppler est une méthode de mesure de vitesses :

- ightharpoonup Lorsqu'ils se rapprochent $\,f_r = f_e \left(1 + \frac{v}{c} \right) \,$
- $\blacktriangleright \ \ \ \text{Lorsqu'ils s'\'eloignent} \ f_r = f_e \left(1 \frac{v}{c} \right)$

Remarque : on peut également utiliser les formules suivantes :

- ightharpoonup Lorsqu'ils se rapprochent $f_r = \frac{f_e}{1 \frac{v}{c}}$
- ightharpoonup Lorsqu'ils s'éloignent $f_r = \frac{f_e}{1 + \frac{V}{c}}$

Avec:

- v la vitesse relative entre l'émetteur et le récepteur
- c la célérité (vitesse) de l'onde.

Quelques célérités à connaitre :

- $c_{son} = 340 \text{ m. s}^{-1}$
- $c_{lumiere} = 3.00 \times 10^8 \text{ m. s}^{-1}$

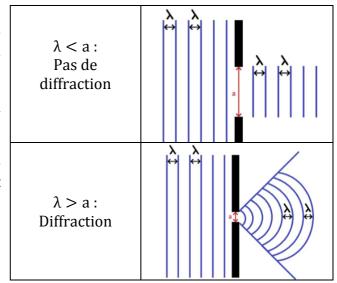
Le décalage Doppler est noté : δf=f-f'

DIFFRACTION

La diffraction est une modification de la direction de propagation d'une onde au passage d'une fente ou d'un obstacle sans modification de sa fréquence ou de sa longueur d'onde.

Plus la taille de l'obstacle est petite plus la diffraction sera importante.

La diffraction a lieu lorsque la taille de l'obstacle a est du même ordre de grandeur ou plus petit que la longueur d'onde.



L'angle de diffraction est défini par :

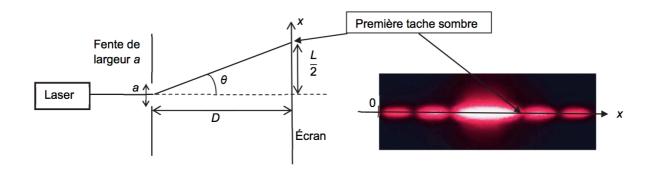
$$\theta = \frac{\lambda}{a}$$

Avec:

- ➤ a la taille de l'obstacle
- > λ la longueur d'onde

Diffraction de la lumière par une fente

Lorsqu'un faisceau lumineux passe à travers une fente, on observe une figure de diffraction avec une tache centrale et d'autres taches plus petites de part et d'autres. la figure est identique pour une fente ou pour un obstacle de dimensions identiques.

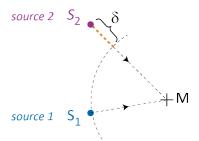


Lorsque
$$\theta$$
 est petit, on considère que tan $(\theta)\approx\theta\;$ et tan $(\theta)\;=\frac{L}{2D}$
$$\theta=\frac{L}{2D}$$

INTERFERENCES

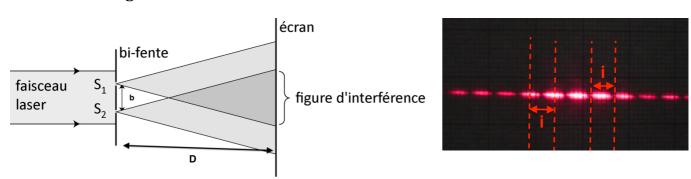
Différence de marche δ en un point M la différence entre les deux distance d_1 et d_2 entre chaque source et le point M:

$$\delta = d_2 - d_1$$



Interférence	Condition physique	Condition Mathématique	Amplitude résultante
Constructive	Deux ondes en phase. + Ondes en phase	δ=kλ	Maximale (son plus fort, lumière plus intense) = \begin{align*} \left(\) \\ \left
Destructive	Deux ondes en opposition de phase. Ondes en opposition de phase	δ=(k+1/2)×λ	Nulle (absence de son, absence de lumière) = Interférences destructives

Fentes d'Young : Interférences ondes lumineuses



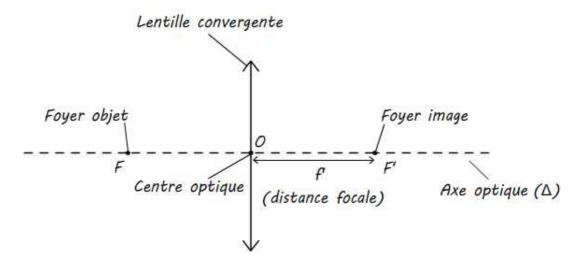
Avec un dispositif de fentes d'Young éclairés en lumière monochromatique, l'interfrange (distance entre le centre de deux franges sombres ou deux franges lumineuses) est donnée par:

$$i = \frac{\lambda D}{b}$$

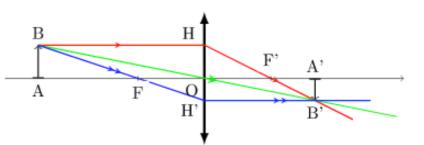
Avec b la distance séparant les deux fentes et D la distance entre le système de fentes et l'écran.

Pour une mesure graphique précise de l'interfrange, on en mesure plusieurs et on en déduit la valeur d'une seule.

LA LUNETTE ASTRONOMIQUE



- Les rayons incidents passant par le centre optique ne sont pas déviés
- Les rayons incidents parallèles à l'axe optique sortent de la lentille en passant par le foyer image F'
- Les rayons incidents passant par le foyer objet F sortent de la lentille parallèlement à l'axe

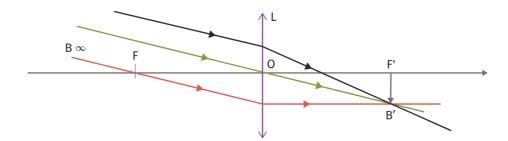


Construction de l'image d'un objet situé à l'infini

Pour construire l'image d'un objet situé à l'infini, c'est-à-dire à une distance très grande par rapport à la distance focale de la lentille, il faut suivre la méthode suivante :

- tracer un rayon parallèle au premier rayon connu qui passe par le centre 0 de la lentille. Il n'est donc pas dévié;
- > tracer un second rayon parallèle aux autres rayons qui passe par le foyer objet F de la lentille : il ressort donc parallèle à l'axe optique.

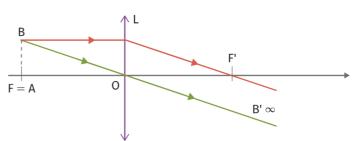
L'image est l'intersection entre ces rayons. L'image se forme dans le plan focal image de la lentille.



Construction de l'image d'un objet situé au foyer objet

Pour construire l'image d'un objet situé dans le plan focal objet d'une lentille, il faut suivre la méthode suivante :

- tracer un rayon issu de B qui passe par le centre optique O de la lentille , il n'est pas dévié;
- Fracer un rayon issu de B parallèle à l'axe optique : il passe par le foyer image F'.



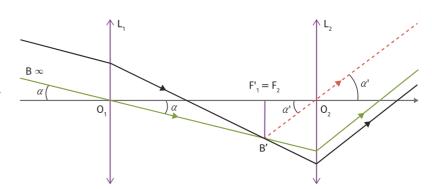
L'image B' de B se forme à l'infini.

Lunette astronomique

Une lunette astronomique est composée de deux tubes coulissant et à chaque extrémité une lentille : L'objectif (grande distance focale) et l'oculaire (petite distance focale).

On considérera que les rayons provenant d'objets lointains sont considéré à l'infini et donc parallèles entre eux.

Lorsque le foyer image de l'objectif est confondu au foyer objet de l'oculaire on obtient une image à l'infini. On dit alors que la lunette est afocale.



Grossissement:

$$G = \frac{\alpha'}{\alpha}$$

Avec:

- $ightharpoonup \alpha$ l'angle sous lequel on voit l'objet à l'œil nu
- \triangleright α' l'angle sous lequel on voit l'objet avec l'appareil

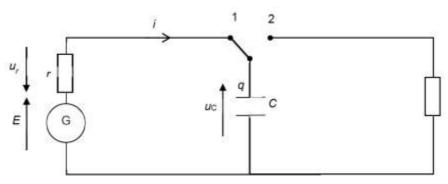
$$\tan(\alpha) \approx \alpha = \frac{A_1 B_1}{f_1'}$$
$$\tan(\alpha') \approx \alpha' = \frac{A_1 B_1}{f_2'}$$

$$G = \frac{\alpha'}{\alpha} = \frac{\frac{A_1 B_1}{f_2'}}{\frac{A_1 B_1}{f_1'}} = \frac{A_1 B_1}{f_2'} \times \frac{f_1'}{A_1 B_1} = \frac{f_1'}{f_2'}$$

Circuits RC

Un condensateur est constitué de deux plaques métalliques, appelés armature, séparés par un isolant appelé diélectrique de symbole :

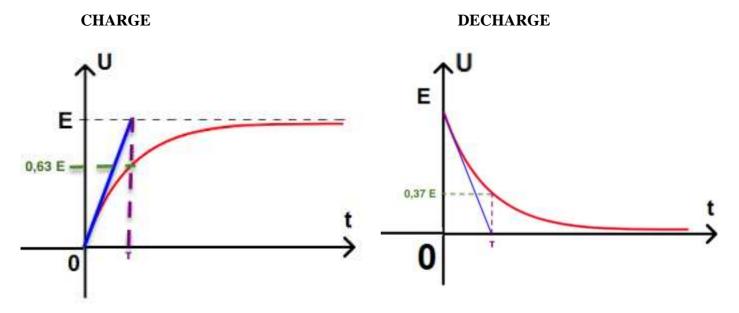
	Relation	Unités	
Intensité i dq		i : L'intensité en Ampère (A)	
Intensité	$1 = \frac{1}{dt}$	q: la charge de l'armature positive en Coulombs (C)	
Canacitá d'un	a-CvII	C : la capacité du condensateur en Farades (F)	
Capacité d'un condensateur	$q=C\times U_c$	q: la charge de l'armature positive en Coulombs (C)	
condensateur		U _c : la tension du condensateur en volt (V)	
Loi d'ohm (pour		U _R : la tension de la résistance en Volt (V)	
les conducteurs	$U_R = R \times i$	$ ightharpoonup R:$ la résistance en ohm (Ω)	
ohmique)		i : L'intensité en Ampère (A)	



	Charge (position 1)	Décharge (position 2)
Additivité des tension	$U_C + U_R = E$	$U_C + U_R = 0$
Etablir l'équation différentielle	$\begin{aligned} &U_{C}(t) + U_{r}(t) = E \\ &\text{or } U_{r}(t) = r \times i \\ &U_{C}(t) + r \times i = E \\ &\text{Or } i(t) = \frac{dq(t)}{dt} \\ &U_{C}(t) + r \times \frac{dq(t)}{dt} = E \\ &\text{Or } q(t) = C \times U_{C}(t) \\ &U_{C}(t) + r \times \frac{d(CU_{C}(t))}{dt} = E \end{aligned}$	$\begin{aligned} &U_{C}(t) + U_{r}(t) = 0 \\ &\text{or } U_{r}(t) = r \times i \\ &U_{C}(t) + r \times i = 0 \\ &\text{Or } i(t) = \frac{dq(t)}{dt} \\ &U_{C}(t) + r \times \frac{dq(t)}{dt} = 0 \\ &\text{Or } q(t) = C \times U_{C}(t) \\ &U_{C}(t) + r \times \frac{d(CU_{C}(t))}{dt} = 0 \end{aligned}$
	$U_{C}(t) + rC \frac{dU_{C}(t)}{dt} = E$ $rC \frac{dU_{C}(t)}{dt} + U_{C}(t) = E$	$U_{C}(t) + rC \frac{dU_{C}(t)}{dt} = 0$ $rC \frac{dU_{C}(t)}{dt} + U_{C}(t) = 0$
Equation différentielle	$U_{C} + RC \frac{dU_{C}}{dt} = E$ $U_{C}(t) = A + Be^{-t/\tau}$	$U_{C} + RC \frac{dU_{C}}{dt} = 0$ $U_{C}(t) = A + Be^{-t/\tau}$
Solution de l'équation différentielle	$U_{C}(t) = A + Be^{-t/\tau}$ $U_{C}(t) = E(1 - e^{-t/\tau})$	$U_{C}(t) = A + Be^{-t/\tau}$ $U_{C} = U_{0}e^{-t/\tau}$

Elle peut être déterminée graphiquement par deux méthodes :

- ✓ $U_C(\tau) = E(1 e^{-\tau/\tau}) = E(1 e^{-1}) = 0,63E$ On lit le temps pour lequel $U_C = 0,63E$ pour la charge, et $U_C = 0,37U_0$ pour la décharge.
- ✓ On trace la tangente à la courbe à t=0 et on regarde l'abscisse du point d'intersection entre cette tangente et l'asymptote $U_C = E$ pour la charge, et $U_C = 0$ pour la décharge.



Plus la valeur de $\,\tau\,$ est grande, plus le condensateur met du temps à se charger ou à se décharger.

On considère que lorsque $t=5\tau$, le condensateur est chargé (ou déchargé) à 99%.

THERMODYNAMIQUE

Un système est :

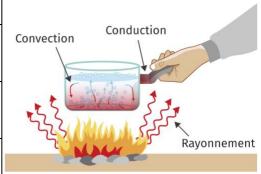
- ➤ Isolé : il ne peut échanger ni matière ni énergie avec l'extérieur
- Fermé : il n'échange pas de matière mais peut échanger de l'énergie avec l'extérieur
- Ouvert : il peut échanger matière-énergie avec l'extérieur

	<u>Relation</u>	<u>Unités</u>
Equation d'état du gaz parfait	P×V=n×R×T	 P la pression du gaz en pascal (Pa) V le volume du gaz en m³ n la quantité de matière en mol R la constante des gaz parfaits R=8,314 J.K-¹.mol-¹ T la température en degré kelvin (K)
Flux thermique : énergie transférée à travers une paroi par unité de temps	$\varphi = \frac{Q}{\Delta t}$	 φ en watt (W) Q en joule (J) Δt en secondes (s)
Résistance thermique : sa capacité à s'opposer au transfert thermique	$R_{th} = \frac{e}{\lambda S} = \frac{ T_2 - T_1 }{\phi}$	 R_{th} en K.W⁻¹ ou en °C.W⁻¹ T₂ et T₁ en degré kelvin (K) ou en degré Celsius (°C) e l'épaisseur en m S la surface en m² λ la conductivité thermique en W.m⁻¹.K⁻¹
Puissance et énergie :	$P = \frac{E}{\Delta t}$	 P en watt (W) E en joule (J) Δt en secondes (s)

Rappel:

- $1m^3=1000L$
- 1 bar = 10^5 Pa
- $T(K)=\theta(^{\circ}C)+273,15$

Modes de tra	nsfert de l'énergie: Un transfert thermique		
s'effectue toujours d'un corps chaud vers un corps froid.			
Conduction	Il y a contact entre les corps de température différente. Exemple : transfert thermique à travers les murs d'une maison.		
Convection	Il y a transfert de matière. Exemple : mouvement des masses d'air dans l'atmosphère.		
Rayonnement	L'absorption ou l'émission d'un rayonnement modifie l'agitation thermique.		



Lorsqu'un système reçoit de l'énergie elle est comptée positivement et lorsqu'il cède de l'énergie elle est comptée négativement.

	Relation	<u>Unités</u>	
Premier principe de la thermodynamique	$\Delta U=W+Q$	 ΔU : variation d'énergie interne (J) W : travail (J) Q : énergie thermique échangée (J) 	
<u>Capacité thermique :</u>	$\Delta U = C \times \Delta T$ $\Delta U = m \times c_m \times \Delta T$ $\Delta U = m \times c_m \times (T_f - T_i)$	 C la capacité thermique (J.K⁻¹) c_m la capacité thermique massique (J.Kg⁻¹. °C⁻¹) ΔT ou Δθ la variation de température m la masse en Kg 	
Loi de Stefan- Boltzmann: Tout corps à température T émet un rayonnement électromagnétique.	$P_s = \sigma \cdot T^4$	 P_s: La puissance surfacique (ou flux thermique surfacique) émis par un corps (W·m⁻²) σ : constante de Stefan-Boltzmann égale à σ=5,67×10⁻⁸ W·m⁻²·K⁻⁴ T : température du corps (K) 	
Échange avec une paroi thermostatée: Un thermostat est un objet dont la température reste constante.	φ=h×S×(T _{paroi} -T)	 h : coefficient de transfert thermique, dit coefficient de Newton (W·m-²·K-¹) S : surface d'échange entre le système et la paroi (m²) 	

Etablir l'équation différentielle :

$$\begin{split} \Phi &= \frac{Q}{\Delta t} \\ \Phi &= \frac{\Delta U}{\Delta t} \\ \text{Or } \Delta U &= C \times \Delta T \\ \text{et } \Phi &= h \times S \times \left(T_{paroi} - T \right) \\ \text{D'ou} \\ \Phi &= \frac{\Delta U}{\Delta t} \\ h \times S \times \left(T_{paroi} - T \right) &= \frac{C \times \Delta T}{\Delta t} \\ \frac{C \times \Delta T}{\Delta t} &= h \times S \times \left(T_{paroi} - T \right) \\ \frac{\Delta T}{\Delta t} &= \frac{h \times S}{C} \times \left(T_{paroi} - T \right) \\ \text{quand } \Delta t \rightarrow \text{vers } 0 \\ \frac{\Delta T}{\Delta t} &= \frac{dT}{dt} \end{split}$$

$$\begin{split} \frac{dT_{(t)}}{dt} &= \frac{h \times S}{C} \times \left(T_{paroi} - T\right) \\ \frac{dT_{(t)}}{dt} &= \frac{h \times S}{C} \times T_{paroi} - \frac{h \times S}{C} T_{(t)} \\ \frac{dT_{(t)}}{dt} &+ \frac{h \times S}{C} T_{(t)} = \frac{h \times S}{C} \times T_{paroi} \end{split}$$

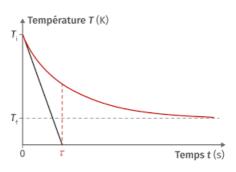
On trouve une équation différentielle de la forme :

$$\frac{dT_{(t)}}{dt} + \frac{1}{\tau}T_{(t)} = \frac{1}{\tau}T_{paroi}$$

Par identification:

$$\frac{1}{\tau} = \frac{h \times S}{C}$$
$$\tau = \frac{C}{h \times S}$$

Graphiquement, Le temps τ caractéristique est l'abscisse du point d'intersection de la tangente à l'origine et de l'asymptote T_{final}



NUCLEAIRE

Noyau d'atome : ^A X	A : nombre de masse (nombre de nucléons)	Z : nombre de charges (ou nombre de protons) aussi appelé numéro atomique	N : nombre de neutrons N=A-Z
Proton ¹ ₁ p	Neutron ¹ ₀ n	Électron _0e	Positron ⁰ ₁ e

Des isotopes sont des atomes possédant le même nombre de protons mais un nombre de neutrons différents. Ex: ${}_{1}^{1}H$ ${}_{1}^{2}H$ ${}_{1}^{3}H$

Radioactivité: Les noyaux instables ${}^{A}_{Z}X$ se transforment spontanément en un autre noyau ${}^{A\prime}_{Z\prime}Y$

Type de radioactivité	Équation	Exemple
Radioactivité β- (électron _¹e)	$_{\mathrm{Z}}^{\mathrm{A}}\mathrm{X} \rightarrow _{\mathrm{Z+1}}^{\mathrm{A}}\mathrm{Y} + _{-1}^{\mathrm{0}}\mathrm{e}$	$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + ^{0}_{-1}\text{e}$
Radioactivité β+ (positron ⁰ ₁ e)	${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + {}_{1}^{0}e$	$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{1}e$
Radioactivité α (noyau d'hélium ⁴ ₂ He)	$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + {^{4}_{2}}He$	$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\text{He}$

Lois de Soddy:

- > Conservation du nombre de nucléons A
- > Conservation du nombre de charges Z.

Un noyau dans un état excité (noté Y^*), retourne à son état fondamental en émettant un rayonnement γ

$$^{A}_{Z}Y^{*}\rightarrow ^{A}_{Z}Y+\gamma$$

Loi de décroissance radioactive

$$A(t) = \lambda N(t) \hspace{1cm} A(t) = -\frac{dN(t)}{dt} \hspace{1cm} Ainsi \hspace{0.1cm} -\frac{dN(t)}{dt} = \lambda N(t)$$

$N_{(t)} = N_0 e^{-\lambda t}$	$N_{(t)}$ le nombre de noyau radioactif restant • N_0 le nombre de noyau initial • λ la constante radioactive en s ⁻¹ • t le temps en s
$A_{(t)} = A_0 e^{-\lambda t}$	A(t) : nombre moyen de désintégration par seconde s'exprime en Becquerel (Bq).
$t_{1/2} = \frac{\ln(2)}{\lambda}$	Temps de demi-vie : durée nécessaire pour que la moitié des noyaux radioactifs se soit désintégrés.
$ au=rac{1}{\lambda}$	Constante de temps τ

FLUIDES

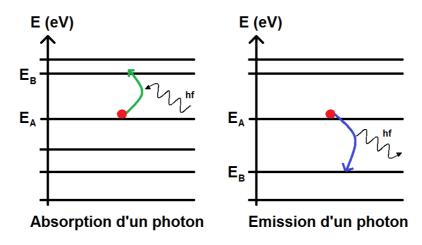
Force pressante F	F=P.S	 F la force en newton (N) P la pression en pascals (Pa) S la surface de la paroi en mètres carrés (m²) 	F est toujours perpendiculaire à la paroi et dirigé du fluide vers l'extérieur
Loi fondamentale de la statique des fluides	$P_{B} - P_{A} = \rho. g. (z_{A} - z_{B})$	 P_B et P_A les pressions aux points A et B en pascal (Pa) ρ la masse volumique en Kg.m³ g l'intensité de pesanteur en newton par kilogramme (N.kg⁻¹) z_A et z_B l'altitude des points A et B en mètre. 	
Poussée d'Archimède	$\begin{split} \vec{A} &= -\vec{P}_{fluide} \\ \vec{A} &= -m_{fluide} \times \vec{g} \\ \vec{A} &= -\rho_{fluide} \times V_{immerg\acute{e}} \times \vec{g} \end{split}$		Force verticale dirigée vers le haut
Débit volumique	$D_{V} = \frac{dV}{dt}$	 D_V: débit volumique (m³·s⁻¹) V : volume d'eau écoulée (m³) t : temps (s) 	
	D _V =S×v	 S la surface en m² v la vitesse en m.s-¹ 	Conservation du débit volumique : $S_1 \times v_1 = S_2 \times v_2$
Bernoulli	$\frac{\rho \times v^2}{2} + \rho \times g \times z + P$ = constante	 ρ la masse volumique en Kg.m⁻³ ν la vitesse du fluide en m.s⁻¹ g l'intensité de pesanteur g=9,81m.s⁻² z l'altitude en m P la pression en Pa 	

L'EFFET PHOTOELECTRIQUE

Le photon

Les transferts d'énergie entre matière et lumière ne sont pas continus : on dit qu'ils sont discontinus ou quantifiés.

Ils ne peuvent se faire que par « paquets » d'énergie contenant chacun une énergie bien déterminée.



L'énergie ΔE d'un photon associé à une radiation de fréquence ν , est donnée par la relation (formule de Planck) :

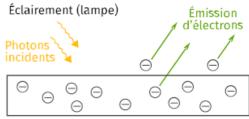
$$\Delta E = h.\nu = h\frac{c}{\lambda}$$

Avec:

- \triangleright ΔE en joules (J)
- > ν en hertz (Hz)
- ► h=6,63.10⁻³⁴ J.s (constante de Planck)
- > c la vitesse de la lumière dans le vide c=3.00.108m.s-1
- > λ la longueur d'onde en mètre (m)

Effet photoélectrique

Lorsqu'un photon entre en collision avec un électron présent dans un métal, il lui transmet son énergie et disparaît. Si cette énergie est suffisamment grande, alors l'électron est éjecté du cortège électronique de l'atome.



Plaque métallique (zinc, cuivre, etc.)

Avec:

E_i l'énergie des photons incident en joules (J)

 $E_i = W_e + E_c$

- ➤ W_e le travail d'extraction en joules (J)
- E_c l'énergie cinétique des électrons émis en joules (J)